Functional replacement of the endogenous tyrosyl-tRNA synthetase–tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion
نویسندگان
چکیده
Non-natural amino acids have been genetically encoded in living cells, using aminoacyl-tRNA synthetase-tRNA pairs orthogonal to the host translation system. In the present study, we engineered Escherichia coli cells with a translation system orthogonal to the E. coli tyrosyl-tRNA synthetase (TyrRS)-tRNA(Tyr) pair, to use E. coli TyrRS variants for non-natural amino acids in the cells without interfering with tyrosine incorporation. We showed that the E. coli TyrRS-tRNA(Tyr) pair can be functionally replaced by the Methanocaldococcus jannaschii and Saccharomyces cerevisiae tyrosine pairs, which do not cross-react with E. coli TyrRS or tRNA(Tyr). The endogenous TyrRS and tRNA(Tyr) genes were then removed from the chromosome of the E. coli cells expressing the archaeal TyrRS-tRNA(Tyr) pair. In this engineered strain, 3-iodo-L-tyrosine and 3-azido-L-tyrosine were each successfully encoded with the amber codon, using the E. coli amber suppressor tRNATyr and a TyrRS variant, which was previously developed for 3-iodo-L-tyrosine and was also found to recognize 3-azido-L-tyrosine. The structural basis for the 3-azido-L-tyrosine recognition was revealed by X-ray crystallography. The present engineering allows E. coli TyrRS variants for non-natural amino acids to be developed in E. coli, for use in both eukaryotic and bacterial cells for genetic code expansion.
منابع مشابه
A general approach for the generation of orthogonal tRNAs.
BACKGROUND The addition of new amino acids to the genetic code of Escherichia coli requires an orthogonal suppressor tRNA that is uniquely acylated with a desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. A tRNA(Tyr)(CUA)-tyrosyl-tRNA synthetase pair imported from Methanococcus jannaschii can be used to generate such a pair. In vivo selections have been developed for sele...
متن کاملRational design of an orthogonal tryptophanyl nonsense suppressor tRNA
While a number of aminoacyl tRNA synthetase (aaRS):tRNA pairs have been engineered to alter or expand the genetic code, only the Methanococcus jannaschii tyrosyl tRNA synthetase and tRNA have been used extensively in bacteria, limiting the types and numbers of unnatural amino acids that can be utilized at any one time to expand the genetic code. In order to expand the number and type of aaRS/tR...
متن کاملRole of tRNA Orthogonality in an Expanded Genetic Code
We found that Methanocaldococcus jannaschii DSM2661 tyrosyl-tRNA synthetase (Mj E9RS), specifically evolved to charge its cognate tRNA with the unnatural amino acid p-acetylphenylalanine (pAcF) in E. coli, misaminoacylates the endogenous E. coli prolyl-tRNAs with pAcF at a low level (0.5% per proline frequency) in both the absence or presence of its co-evolved amber suppressor tRNA (M. jannasch...
متن کاملBioinformatic Analysis Reveals Archaeal tRNATyr and tRNATrp Identities in Bacteria
The tRNA identity elements for some amino acids are distinct between the bacterial and archaeal domains. Searching in recent genomic and metagenomic sequence data, we found some candidate phyla radiation (CPR) bacteria with archaeal tRNA identity for Tyr-tRNA and Trp-tRNA synthesis. These bacteria possess genes for tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS) predict...
متن کاملAn expanded genetic code with a functional quadruplet codon.
With few exceptions the genetic codes of all known organisms encode the same 20 amino acids, yet all that is required to add a new building block are a unique tRNA/aminoacyl-tRNA synthetase pair, a source of the amino acid, and a unique codon that specifies the amino acid. For example, the amber nonsense codon, TAG, together with orthogonal Methanococcus jannaschii or Escherichia coli tRNA/synt...
متن کامل